
1. Download BuildTools from mineacademy.org/buildtools

2.

first line with java parameters. It should look like this:

java -Xms2G -Xmx2G -jar BuildTools.jar --rev latest 

pause

Take note for the –remapped argument, this will install additional Spigot jars into your local Maven repository with 

the classifiers “remapped-obf” and “remapped-mojang” so you can use it in your pom.xml file for projects.

3. Launch the script and wait until it says 

“Success! Everything completed successfully. Copying final .jar files now.”

Step 1: Assembling BuildTools

Place BuildTools.jar into a separate folder. Copy over the launching script from your test server there and edit the

–-remapped

Type your text

https://mineacademy.org/buildtools


1. Open mineacademy.org/mappings-pom

2. Remove any Minecraft versions 1.17 or 

newer from your pom.xml as this will 

cause conflicts.

3. Update your pom.xml according to the 

instructions in the paste above.

Step 2: Updating pom.xml

https://mineacademy.org/mappings-pom


1. I recommend commenting out all NMS dependencies from 

your pom.xml during update process to avoid accidental 

imports.

2. Duplicate your NMS classes.

3. Since Mojang’s names are very different from Spigot’s, use 

mineacademy.org/mappings to help you find the new names.

4. Hot-swap / live debug only works with Spigot’s mapping and 

not here since Ant (build.xml) doesn’t support remapping. 

You will have to “clean install” each time using Maven and 

start your server manually. Give it a good test!

Step 3: Fixing compile errors and testing

https://mineacademy.org/mappings


• A) Reflection (requires Mojang’s mappings) — To support multiple Minecraft versions with different mappings, you can 

sometimes just stay on the most recent mappings and use reflection to call methods that were different in older MC versions. 

You will need to downgrade your MC version to an older one using older BuildTools revision (--rev parameter) and then 

update pom.xml with it, see what breaks, patch it using reflection, and then release your plugin.

• B) Multiple projects (supports Spigot’s mappings) — For large code changes you will need to create the following setup:

1. An interface project

2. Minecraft 1.19 NMS project

3. Minecraft 1.20 NMS project

4. Your main plugin

Your main plugin will have 1, 2, 3 as dependencies and shade them. Your interface project will only include Foundation (or 

nothing). Your two NMS projects will only include your interface project and Foundation. Keep things simple, you do not 

even need to use “parent” mechanism in pom.xml to achieve this.

Multi-version support


	Slide 1
	Slide 2
	Slide 3
	Slide 4



